Как найти среднее арифметическое? Как вычислить среднее арифметическое Среднее арифметическое x и y равна 100.

Запомните!

Чтобы найти среднее арифметическое , нужно сложить все числа и поделить их сумму на их количество.


Найти среднее арифметическое 2, 3 и 4 .

Обозначим среднее арифметическое буквой «m ». По определению выше найдем сумму всех чисел.


Разделим полученную сумму на количество взятых чисел. У нас по условию три числа.

В итоге мы получаем формулу среднего арифметического :


Для чего нужно среднее арифметическое?

Кроме того, что его постоянно предлагают найти на уроках, нахождение среднего арифметического весьма полезно и в жизни.

Например, вы решили продавать футбольные мячи. Но так как вы новичок в этом деле, совершенно непонятно по какой цене вам продавать мячи.

Тогда вы решаете узнать, по какой цене в вашем районе уже продают футбольные мячи конкуренты. Узнаем цены в магазинах и составим таблицу.

Цены на мячи в магазинах оказались совсем разные. Какую цену для продажи футбольного мяча нам лучше выбрать?

Если выбрать самую низкую (290 руб.), то мы будем продавать товар себе в убыток. Если выбрать самую высокую (360 руб.), то покупатели не будут приобретать футбольные мячи у нас.

Нам нужна средняя цена. Здесь на помощь приходит среднее арифметическое .

Вычислим среднее арифметическое цен на футбольные мячи:

Средняя цена =

290 + 360 + 310
3
=
960
3
= 320 руб.

Таким образом, мы получили среднюю цену (320 руб.), по которой мы можем продавать футбольный мяч не слишком дёшево и не слишком дорого.

Средняя скорость движения

Со средним арифметическим тесно связано понятие средней скорости движения .

Наблюдая за движением транспорта в городе, можно заметить, что машины, то разгоняются и едут с большой скоростью, то замедляются и едут с маленькой скоростью.

Таких участков на пути следования автотранспорта бывает много. Поэтому для удобства расчётов, используют понятие средней скорости движения.

Запомните!

Средняя скорость движения — это весь пройденный путь разделить на всё время движения.

Рассмотрим задачу на среднюю скорость.

Задача № 1503 из учебника «Виленкин 5 класс»

Автомобиль двигался 3,2 ч по шоссе со скоростью 90 км/ч, затем 1,5 ч по грунтовой дороге со скоростью 45 км/ч, наконец 0,3 ч по просёлочной дороге со скоростью 30 км/ч. Найдите среднюю скорость движения автомобиля на всём пути.

Для расчёта средней скорости движения нужно знать весь путь, пройденный автомобилем, и всё время, которое автомобиль двигался.

S 1 = V 1 t 1

S 1 = 90 · 3,2 = 288 (км)

— шоссе.

S 2 = V 2 t 2

S 2 = 45 · 1,5 = 67,5 (км) — грунтовая дорога.

S 3 = V 3 t 3

S 3 = 30 · 0,3 = 9 (км) — просёлочная дорога.

S = S 1 + S 2 + S 3

S = 288 + 67,5 + 9 = 364,5 (км) — весь путь, пройденный автомобилем.

T = t 1 + t 2 + t 3

T = 3,2 + 1,5 + 0,3 = 5 (ч) — всё время.

V ср = S: t

V ср = 364,5: 5 = 72,9 (км/ч) — средняя скорость движения автомобиля.

Ответ: V ср = 72,9 (км/ч) — средняя скорость движения автомобиля.

Что такое среднее арифметическое

Средним арифметическим нескольких величин является отношение суммы этих величин к их количеству.

Среднее арифметическое определенного ряда чисел называется сумма всех этих чисел, поделенная на количество слагаемых. Таким образом, среднее арифметическое является средним значением числового ряда.

Чему равно среднее арифметическое нескольких чисел? А равно они сумме этих чисел, которая поделена на количество слагаемых в этой сумме.

Как найти среднее арифметическое число

В вычислении или нахождении среднего арифметического нескольких чисел, нет ничего сложного, достаточно сложить все представленные числа, а полученную сумму разделить на количество слагаемых. Полученный результат и будет средним арифметическим этих чисел.


Рассмотрим этот процесс более подробно. Что же нам нужно сделать для вычисления среднего арифметического и получения конечного результата этого числа.

Во-первых, для его вычисления нужно определить набор чисел или их количество. В этот набор могут входить большие и маленькие числа, и их количество может быть каким угодно.

Во-вторых, все эти числа нужно сложить и получить их сумму. Естественно, если числа несложные и их небольшое количество, то вычисления можно произвести, записав от руки. А если же набор чисел впечатляющий, то лучше воспользоваться калькулятором или электронной таблицей.

И, в-четвертых, полученную от сложения сумму необходимо разделить на количество чисел. В итоге мы получим результат, который и будет средним арифметическим числом этого ряда.



Для чего нужно среднее арифметическое

Среднее арифметическое может пригодиться не только для решения примеров и задач на уроках математики, но для других целей, необходимых в повседневной жизни человека. Такими целями может служить подсчет среднего арифметического для расчета среднего расхода финансов в месяц, или для подсчета времени, которое вы тратите на дорогу, также для того чтобы узнать посещаемость, производительность, скорость движения, урожайность и много другого.

Так, например, давайте попробуем рассчитать, сколько времени вы тратите на дорогу в школу. Идя в школу или возвращаясь, домой вы каждый раз тратите на дорогу разное время, так как когда вы спешите, то вы идете быстрее, и поэтому дорога занимает меньше времени. А вот, возвращаясь, домой вы можете идти не спеша, общаясь с одноклассниками, любуясь природой и поэтому времени на дорогу займет больше.

Поэтому, точно определить время, затраченное на дорогу у вас не получиться, но благодаря среднему арифметическому вы сможете приблизительно узнать время, которое вы тратите на дорогу.

Припустим, что в первый день после выходных, вы потратили на путь от дома до школу пятнадцать минут, на второй день ваш путь занял двадцать минут, в среду вы прошли расстояние за двадцать пять минут, за такое же время составил ваш путь и в четверг, а в пятницу вы никуда не торопились и возвращались целых пол часа.

Давайте найдем среднее арифметическое, прибавив время, за все пять дней. Итак,

15 + 20 + 25 + 25 + 30 = 115

Теперь разделим эту сумму на количество дней

Благодаря такому способу вы узнали, что путь от дома до школы вы приблизительно тратите двадцать три минуты своего времени.

Домашнее задание

1.Путем нехитрых вычислений найдите среднее арифметическое число посещаемости учеников вашего класса за неделю.

2. Найдите среднее арифметическое:



3. Решите задачу:



Не только в различных математических науках, но и в повседневной жизни возникают случаи, когда нужно рассчитать средний показатель чего-либо. Например, среднюю стоимость огурцов на рынке, средний рост ребенка, среднюю стоимость проживания в гостинице и пр.

Всему этому уже давно было придумано научное название – «среднее арифметическое». Данный показатель активно применяется в статистике для обобщения результатов. К примеру, средний возраст для рождения детей, средний возраст смерти среди мужчин и женщин, средняя заработная плата по регионам и по России в целом.

К примеру, при принятии закона о повышении пенсионного возраста, власти как раз исходили из среднего возраста смерти в нашей стране.

Разберемся, что же представляет собой данный показатель.

Среднее арифметическое – это усредненный показатель всех имеющихся значений . Для его расчета необходимо суммировать все участвующие в операции числа, после чего разделить на их общее количество.

К примеру, в 2017 году полное среднее образование получили дети разных возрастов: 16, 17 и 18 лет. Среднее арифметическое будет рассчитано, как сумма всех возрастов, деленная на три. Итого средний возраст ребёнка, окончившего 11 класс, составил 17 лет.

В данном примере показан примитивный расчет на примере трех детей. По факту суммировать нужно все данные, имеющиеся в наличии. То есть если речь будет идти о пяти детях, то мы суммируем их возраст, к примеру, 17+17+18+16+17 и делим полученное на пять.

Аналогично производится расчет любого среднего арифметического для какой-либо операции. То есть, если, например, нужно подсчитать средний возраст матерей, родивших первого ребенка в 2017 году, то сначала нужно будет суммировать все показатели возраста, после чего поделить на общее число родительниц.

То есть в общем виде формулу можно представить так:

Среднее арифметическое = (сумма всех имеющихся значений )/общее число значений, что участвуют в операции.

Таким образом, расчет довольно прост, даже для школьников. Затруднения могут возникнуть лишь по причине большого количества респондентов, участвующих в операции.

Важно понимать, что средний показатель не является просто числом . Он имеет особый физический смысл, который уже долгие годы применяется в реальном мире на практике.

Неправильным было бы использование среднего арифметического лишь на бумаге, в тетради или в компьютерных программах. В противном случае, можно получить множество бессмысленных и просто нереальных значений.

Средних, на самом деле, существует несколько. Однако в каждом случае, только одно из них верное. В каждой из операций, нужно использовать только тот вид среднего, который необходим, иначе будет допущена огромная ошибка.

Какие виды средних используются на практике? Самые распространенные средние – это:

  1. Среднее арифметическое;
  2. Среднее геометрическое;
  3. Среднее гармоническое.

Эти значения наиболее часто используются , как в повседневной жизни, так и в науках. Наиболее часто, конечно же, рассчитывается первый показатель.

Зачастую данный показатель в реальных условиях применяется и рассчитывается неверно. Почему так происходит? Фактически, базой среднего арифметического выступает применение закона о больших числах. Кроме того, применяется и допущение, согласно которому исходная величина является нормально определенной.

Это означает, что вокруг представленного в ряде значений, имеется наиболее частое отклонение в какую-либо сторону. То есть. В большую или меньшую. Например, в ряду чисел 8,8,9,8,9,8,8, отклонение будет в меньшую сторону, так как больше восьмерок. А в ряде: 17,17, 20,20,20,20,20, отклонение, наоборот, будет в большую сторону, так как в этом случае больше все же «двадцаток».

Однако в большинстве случаев, такие отклонения являются небольшими и обычно равными по вероятности. Суть проблемы в том, что в бизнесе, как и в реальной жизни, нормальность распределения на практике можно встретить крайне редко.

То есть, к примеру, время обслуживания одного клиента, время, которое клиенту ожидают этого обслуживания, сумма, на которую они потом заключат контракт, рыночная доля, прирост доходов и прочее, являются теми показателями, что не распределяются равномерно и нормально. Их усреднять в некоторых случаях нежелательно именно при помощи среднего арифметического. Потому что это было бы неправильно.

На практике нормальность распределения часто можно встретить при наличии большого количества значений, начиная с сотен и тысяч. К примеру, количество обращений в техническую поддержку крупной компании может быть распределено нормально, как на бумаге, так и фактически.

Тем не менее, только лишь количества не будет достаточно, ведь в каждой конкретной ситуации нужно следить и за правильностью распределения . Только так можно будет правильно в итоге рассчитать значение среднего арифметического.

Тема среднего арифметического и среднего геометрического входит в программу математики 6-7 классов. Так как параграф довольно прост для понимания, его быстро проходят, и к завершению учебного года школьники его забывают. Но знания в базовой статистике нужны для сдачи ЕГЭ, а также для международных экзаменов SAT. Да и для повседневной жизни развитое аналитическое мышление никогда не помешает.

Как вычислить среднее арифметическое и среднее геометрическое чисел

Допустим, имеется ряд чисел: 11, 4, и 3. Средним арифметическим называется сумма всех чисел, поделенная на количество данных чисел. То есть в случае чисел 11, 4, 3, ответ будет 6. Как образом получается 6?

Решение: (11 + 4 + 3) / 3 = 6

В знаменателе должно стоять число, равное количеству чисел, среднее которых нужно найти. Сумма делится на 3, так как слагаемых три.

Теперь надо разобраться со средним геометрическим. Допустим, есть ряд чисел: 4, 2 и 8.

Средним геометрическим чисел называется произведение всех данных чисел, находящееся под корнем со степенью, равной количеству данных чисел.То есть в случае чисел 4, 2 и 8 ответом будет 4. Вот каким образом это получилось:

Решение: ∛(4 × 2 × 8) = 4

В обоих вариантах получились целые ответы, так как для примера были взяты специальные числа. Так происходит отнюдь не всегда. В большинстве случаев ответ приходится округлять или оставлять под корнем. Например, для чисел 11, 7 и 20 среднее арифметическое ≈ 12,67, а среднее геометрическое - ∛1540. А для чисел 6 и 5 ответы, соответственно, будут 5,5 и √30.

Может ли так произойти, что среднее арифметическое станет равным среднему геометрическому?

Конечно, может. Но только в двух случаях. Если имеется ряд чисел, состоящий только либо из единиц, либо из нулей. Примечательно также то, что ответ не зависит от их количества.

Доказательство с единицами: (1 + 1 + 1) / 3 = 3 / 3 = 1 (среднее арифметическое).

∛(1 × 1 × 1) = ∛1 = 1(среднее геометрическое).

Доказательство с нулями: (0 + 0) / 2=0 (среднее арифметическое).

√(0 × 0) = 0 (среднее геометрическое).

Другого варианта нет и быть не может.

) и выборочное среднее (выборки).

Энциклопедичный YouTube

  • 1 / 5

    Обозначим множество данных X = (x 1 , x 2 , …, x n ), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной (, произносится «x с чертой»).

    Для обозначения среднего арифметического всей совокупности используется греческая буква μ . Для случайной величины , для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки x i из этой совокупности μ = E{x i } есть математическое ожидание этой выборки.

    На практике разница между μ и x ¯ {\displaystyle {\bar {x}}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда x ¯ {\displaystyle {\bar {x}}} (но не μ) можно трактовать как случайную переменную , имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

    Обе эти величины вычисляются одним и тем же способом:

    x ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + ⋯ + x n) . {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\cdots +x_{n}).}

    Примеры

    • Для трёх чисел необходимо сложить их и разделить на 3:
    x 1 + x 2 + x 3 3 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}}{3}}.}
    • Для четырёх чисел необходимо сложить их и разделить на 4:
    x 1 + x 2 + x 3 + x 4 4 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}+x_{4}}{4}}.}

    Или проще 5+5=10, 10:2. Потому что мы складывали 2 числа, а значит, сколько чисел складываем, на столько и делим.

    Непрерывная случайная величина

    f (x) ¯ [ a ; b ] = 1 b − a ∫ a b f (x) d x {\displaystyle {\overline {f(x)}}_{}={\frac {1}{b-a}}\int _{a}^{b}f(x)dx}

    Некоторые проблемы применения среднего

    Отсутствие робастности

    Хотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, что означает, что среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическое может не соответствовать понятию «среднего», а значения среднего из робастной статистики (например, медиана) может лучше описывать центральную тенденцию.

    Классическим примером является подсчёт среднего дохода. Арифметическое среднее может быть неправильно истолковано в качестве медианы , из-за чего может быть сделан вывод, что людей с большим доходом больше, чем на самом деле. «Средний» доход истолковывается таким образом, что доходы большинства людей находятся вблизи этого числа. Этот «средний» (в смысле среднего арифметического) доход является выше, чем доходы большинства людей, так как высокий доход с большим отклонением от среднего делает сильный перекос среднего арифметического (в отличие от этого, средний доход по медиане «сопротивляется» такому перекосу). Однако, этот «средний» доход ничего не говорит о количестве людей вблизи медианного дохода (и не говорит ничего о количестве людей вблизи модального дохода). Тем не менее, если легкомысленно отнестись к понятиям «среднего» и «большинство народа», то можно сделать неверный вывод о том, что большинство людей имеют доходы выше, чем они есть на самом деле. Например, отчёт о «среднем» чистом доходе в Медине, штат Вашингтон , подсчитанный как среднее арифметическое всех ежегодных чистых доходов жителей, даст на удивление большое число из-за Билла Гейтса . Рассмотрим выборку (1, 2, 2, 2, 3, 9). Среднее арифметическое равно 3.17, но пять значений из шести ниже этого среднего.

    Сложный процент

    Если числа перемножать , а не складывать , нужно использовать среднее геометрическое , а не среднее арифметическое. Наиболее часто этот казус случается при расчёте окупаемости инвестиций в финансах.

    Например, если акции в первый год упали на 10 %, а во второй год выросли на 30 %, тогда некорректно вычислять «среднее» увеличение за эти два года как среднее арифметическое (−10 % + 30 %) / 2 = 10 %; правильное среднее значение в этом случае дают совокупные ежегодные темпы роста, по которым годовой рост получается только около 8,16653826392 % ≈ 8,2 %.

    Причина этого в том, что проценты имеют каждый раз новую стартовую точку: 30 % - это 30 % от меньшего, чем цена в начале первого года, числа: если акции в начале стоили $30 и упали на 10 %, они в начале второго года стоят $27. Если акции выросли на 30 %, они в конце второго года стоят $35.1. Арифметическое среднее этого роста 10 %, но поскольку акции выросли за 2 года всего на $5.1, средний рост в 8,2 % даёт конечный результат $35.1:

    [$30 (1 - 0.1) (1 + 0.3) = $30 (1 + 0.082) (1 + 0.082) = $35.1]. Если же использовать таким же образом среднее арифметическое значение 10 %, мы не получим фактическое значение: [$30 (1 + 0.1) (1 + 0.1) = $36.3].

    Сложный процент в конце 2 года: 90 % * 130 % = 117 % , то есть общий прирост 17 %, а среднегодовой сложный процент 117 % ≈ 108.2 % {\displaystyle {\sqrt {117\%}}\approx 108.2\%} , то есть среднегодовой прирост 8,2 %.. Это число неверно по двум причинам.

    Среднее значение для циклической переменной, рассчитанное по приведённой формуле, будет искусственно сдвинуто относительно настоящего среднего к середине числового диапазона. Из-за этого среднее рассчитывается другим способом, а именно, в качестве среднего значения выбирается число с наименьшей дисперсией (центральная точка). Также вместо вычитания используется модульное расстояние (то есть, расстояние по окружности). Например, модульное расстояние между 1° и 359° равно 2°, а не 358° (на окружности между 359° и 360°==0° - один градус, между 0° и 1° - тоже 1°, в сумме - 2°).